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Scientific advances create the need to become computationally adept to 
tackling problems of increasing complexity. The use of computers in 
attaining solutions to many of science’s difficult problems is inevitable. 
Therefore, educators face the challenge to infuse the undergraduate 
curriculum with computational approaches that will enhance students’
abilities and prepare them to meet the world’s newer generation of 
problems. Computational physics courses are becoming part of the
undergraduate physics landscape and learned skills need to be honed and 
practiced. A reasonable ground to do so is the standard traditional upper 
level physics courses. I have thus developed a classical mechanics 
textbook1 that employs computational techniques. The idea is to make 
use of numerical approaches to enhance understanding and, in several 
cases, allow the exploration and incorporation of the “what if 
environment” that is possible through computer algorithms. The 
textbook uses Matlab because of its simplicity, popularity, and the 
swiftness with which students become proficient in it. The example 
code, in the form of Matlab scripts, is provided not to detract students 
from learning the underlying physics. Students are expected to be able to 
modify the code as needed. Efforts are under way to build OSP2 Java 
programs that will perform the same tasks as the scripts. Selected 
examples that employ computational methods will be presented.
1 To be published, Jones and Bartlett Publishers.
2 Open Source Physics: http://www.opensourcephysics.org/.
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Chapter 1 Highlights
Why we need computational physics? We can go beyond solvable problems. We 
can get more insight. We can explore situations beyond classroom examples.

Start with the iterative Euler method.
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Chapter 1 Highlights

Why we need computational physics? We can go beyond solvable problems. We 
can get more insight. We can explore situations beyond classroom examples.

If we know the acceleration of an object,

If  the acceleration is constant, an object’s velocity is

However, if the acceleration is not constant, say a mass at the end of a spring,

)(txkFs −=
2

2( ) ( ) / d x dva t k x t m
dt dt

= − = =

The analytic solution is done in a later chapter. Let’s look at a numerical solution. 
MATLAB code is provided. Students are encouraged to run it and explore it.

•The Euler Method to solve a 2nd order DE: convert it to two 2nd order DE’s

( , )dx v t x
dt

= ( , )dv a t v
dt

= So that we do,and 

1 ,i i iv v a t+ = + ∆
0[ , ]ft tto be solved on1 1i i ix x v t+ += + ∆ with

( )0ft t t N∆ = −1 ,i it t t+ = + ∆ .i ia k x m= − For N steps 

0 ,x 0vGiven initial conditions: 

First example, by calculator (reproduced by a general force MATLAB code): let 

[ ]0,1s0 01000 / , 5 , 0.1 , 0.0 /k N m m kg x m v m s= = = = on time interval 

10N = 0.1t∆ =for so that 



•Create a table of the calculations

1i i iv v a t+ = + ∆ 1 1i i ix x v t+ += + ∆ 200i ia x m= −i

0 0.0 0.0 0.1 -20

1 0.1 -2.0 -0.1 20

2 0.2 0.0 -0.1 20

3 0.3 2.0 0.1 -20

4 0.4 0.0 0.1 -20

5 0.5 -2.0 -0.1 20

6 0.6 0.0 -0.1 20

7 0.7 2.0 0.1 -20

8 0.8 0.0 0.1 -20

9 0.9 -2.0 -0.1 20

10 1.0 0.0 -0.1 20

it i t= ∆

•Can create a plot of this rough calculation



Matlab Code for the above example

%ho1.m
%Calculation of position, velocity, and acceleration for a harmonic
%oscillator versus time. The equations of motion are used for small time intervals
clear;
%NPTS=100;TMAX=1.0;%example Maximum number of points and maximum time
TTL=input(' Enter the title name TTL:','s');%string input
NPTS=input(' Enter the number calculation steps desired NPTS: ');
TMAX=input(' Enter the run time TMAX: ');
NT=NPTS/10;%to print only every NT steps
%K=1000;M=5.0;C=0.0;E=0.0;W=0.0;x0=0.1;v0=0.0;% example Parameters
K=input(' Enter the Spring contant K: ');
M=input(' Enter the bob mass M: ');
C=input(' Enter the damping coefficient C: ');
E=input(' Enter the magnitude of the driving force E: ');
W=input(' Enter the driving force frequency W: ');
x0=input(' Enter the initial position x0: ');% Initial Conditions
v0=input(' Enter the initial velocity v0: ');% Initial Conditions
t0=0.0;% start at time t=0
dt=TMAX/NPTS;%time step size
fprintf(' Time step used dt=TMAX/NPTS=%7.4f\n',dt);%the time step being used
F=-K*x0-C*v0+E*sin(W*t0); % initial force
a0=F/M;% initial acceleration
fprintf('    t       x       v       a\n');%output column labels
v(1)=v0;
x(1)=x0;
a(1)=a0;
t(1)=t0;
fprintf('%7.4f %7.4f %7.4f %7.4f\n',t(1),x(1),v(1),a(1));%print initial values
for i=1:NPTS

v(i+1)=v(i)+a(i)*dt;                   %new velocity
x(i+1)=x(i)+v(i+1)*dt;                 %new position
t(i+1)=t(i)+dt;                        %new time
F=-K*x(i+1)-C*v(i+1)+E*sin(W*t(i+1));  %new force
a(i+1)=F/M;                            %new acceleration

% print only every NT steps
if(mod(i,NT)==0)

fprintf('%7.4f %7.4f %7.4f %7.4f\n',t(i+1),x(i+1),v(i+1),a(i+1));
end;

end;

ho1.m continued on next page



•We also need to be able to visualize analytical solutions – so use small MATLAB 
scripts provided or modify available ones

•Harmonic Motion example: Interacting Spring-Mass System (Computation)

Interaction mass-
spring system 
a)with walls, and b) 
without walls

2
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1 1 1 0 12 ( )
d x

m k x k x
dt

= − − −
2

2
2 2 2 0 2 12 ( )

d x
m k x k x x

dt
= − − −

1 2 0k k= =

2
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1 2

( ) ( ) ( )cm cm r
m

x t x t x x t
m m

= − −
+

1
2 0

1 2

( ) ( ) ( )cm cm r
m

x t x t x x t
m m

= − +
+

The analytic solution is:

ho1.m continued from previous page

subplot(3,1,1)
plot(t,x,'k-');
ylabel('x(t) (m)','FontSize',14);
h=legend('position vs time'); set(h,'FontSize',14);
title(TTL,'FontSize',14);
subplot(3,1,2)
plot(t,v,'b-');
ylabel('v(t) (m/s)','FontSize',14);
h=legend('velocity vs time'); set(h,'FontSize',14)
subplot(3,1,3)
plot(t,a,'r-');
ylabel('a(t) (m/s^2)','FontSize',14);
xlabel('time (sec)','FontSize',14);
h=legend('acceleration vs time'); set(h,'FontSize',14)

2x and

•Case 1: No Walls - Single Mode

0 20 10 ,rA v v vω = = −
0 20 10rB x x x= = −sin cos ,rx A t B tω ω= +

1 10 2 201 1 2 2
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cm
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m m m m
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0m x k x k M x= − −Write the equations in the matrix form 

0
0
m

m
m

⎛ ⎞
≡ ⎜ ⎟
⎝ ⎠

1

2

x
x

x
⎛ ⎞
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0
0
k

k
k

⎛ ⎞
≡ ⎜ ⎟
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1 1
1 1

M
−⎛ ⎞

≡ ⎜ ⎟−⎝ ⎠
Solve using eigenvalue-eigenvector method, get two modes

1 10 20

2 10 20

( ) cos cos sin sin
( ) sin sin cos cos

m m

m m

x t x t t x t t
x t x t t x t t

ω ω ω ω
ω ω ω ω

= +
= +

•Can create a plot of this calculation inter_spr1.html

The coupled mass-
spring system 
without walls with 
a single mode of 
vibrations

1 2 0k k k k= = ≠1 2 ,m m m= =•Case2:  Full System - Bimodal 

where

Average 
frequency

Modulation 
frequency

( )1 2 / 2ω ω ω= + ( )2 1 / 2mω ω ω= −

The solution of the 
full coupled 
spring-mass 
bimodal system

inter_spr2.html•Can create a plot of this calculation



• Three Dimensional Motion of a charged Particle in an Electromagnetic
Field (Computation) - This follows the two dimensional analytic solutions 
of the charge in Electric, magnetic, and joint E& B fields

We have

F qv B qE ma= × + =
2 2 2

2 2 2( ) / , ( ) / , ( ) /y z z y x z x x z y x y y x z
d x d y d zq v B v B E m q v B v B E m q v B v B E m
dt dt dt

= − + = − + = − +

or

In MATLAB write these as

(1), (2);x r x r→ → (3), (4);y r y r→ → (5), (6)z r z r→ →

Obtain six 1st order equations given by

[ ](1) (2)(2), (4) (3) (6) (2) (1) /dr drr q r B r B E m
dt dt

= = − +

[ ](3) (4)(4), (6) (1) (2) (3) (2) /dr drr q r B r B E m
dt dt

= = − +

[ ](5) (6)(6), (2) (2) (4) (1) (3) /dr drr q r B r B E m
dt dt

= = − +

where we have the field arrays ( , , ) (1, 2,3),x y zE E E E E= = ( , , ) (1, 2,3)x y zB B B B B= =
8 9 9[0.5 10 ,1 10 , -3 10 ],E − − −= × × × 8 9 8[1 10 , -1 10 ,5.13 10 ]B − − −= × × ×Field values example:

A charged particle 
moving in the presence 
of a three dimensional 
electromagnetic field

• see 
cycloid3d.html



Systems of Coordinates - Foucault pendulum (computation)

a) The Foucault 
pendulum and b) 
the forces on it.

S-frame (Earth’s center) acceleration: ( )ˆ / 2a g k T m r r rω ω ω′ ′ ′ ′= − + = + × + × ×

Look at x-y plane motion, and ignore ( ) ,rω ω ′× × but keep the Coriolis term, and

ˆ ˆ ,x yT T i T j′ ′= + ˆ ˆ ,r x i y j′ ′ ′ ′ ′= +

0

0

2 sin /
2 sin /

x y g x L
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ω θ
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y

T T T T x L
T T T T y L

α β
β α

′

′

′= − = − = −
′= − = − = −

5
0 7.272 10 /rad sω −= ×get where for Earth

0 1 2 0 1 2

0 1 2 0 1 2

( ) cos cos sin cos
( ) sin cos cos cos

x t x t t y t t
y t x t t y t t

ω ω ω ω
ω ω ω ω

′ ′ ′= +
′ ′ ′= − +

2 2
2 1 fω ω ω≡ +

1 0

/  Pendulum frequency

sin  Precessional frequency
f g Lω

ω ω θ

= ←

= ← Latitude angleθ ←

Solve and get:
with

Equations (7.8.9) for a 
Foucault pendulum with a 
24 hour period 

This is for a 
Foucault 
pendulum with a 
swinging period 
of one hour 
(very long!)

See 
Foucault.html



Gravitation: Binary Mass 
System Simulation

Center of mass 
of a binary mass 
system

2
1

1
2

cm

cm

m
r r r

m
m

r r r
m

= −

= +

2 2
1 1 2 12 2 1 2 21

1 22 3 2 3
12 21

,
d r Gm m r d r Gm m r

m m
dt r dt r

= − = −

Can write an equation for each mass

But can also use Center of Mass - Relative Coordinate Method 

11 2

2

/ /
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rr
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
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2 3

Gm m rd r
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→ = +

whose 
solution we 
know ( )

2

2
0

1
1 / cos

L
r

K u L K
µ

µ µ µ
µ µ θ

= −
⎡ ⎤− ⎣ ⎦

21 12 2 1r r r r r≡ = − = −

and convert to an equation 
for the reduced mass

2 2

min2 2
1 2 0

1 2

1 1
( ) 1 cos

1 cos
( )

v r er r
G m m eu v r

G m m
θ

θ

+⎛ ⎞= = ⎜ ⎟+ +⎛ ⎞ ⎝ ⎠
+⎜ ⎟+⎝ ⎠

Then get r1 and 
r2. Example 
follows:

or

Binary system 
simulation using 
analytic formulas

Using 
astronomical 
units

see 

and 
binary1.html

binary1.avi



Rutherford Scattering (simulation)

Alpha particle 
with impact 
parameter 
directed at a 
target 

target

projectile

t e

p e

q Z q

q Z q

=

=

( )

2

3 / 22 2
ˆ ˆ ˆ ˆ( ) ( )e t p

p x y

kq Z Zdm v i v j x i y j
dt x y

+ = +
+

Projectile 
equation of 
motion 
with a 
fixed target
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3 3 / 22 2

ˆ ˆ( )ˆ ˆ( ) e
x y

b

kq K x i y jd v i v j
dt m a m x yα

τ⎡ ⎤ +
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τ
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− −
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−

×
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and let

15 22 61 10 1.695 10 5.898 10 / 0.01965b bv a m s m s cτ − −= = × × = × =

take 1ba fm=

AuK Z Zα=

1m =

Use dimensionless units:

Speed unit:

( ) ( )3 / 2 3 / 22 2 2 2
, ; , yx

x y

dvdvdx Kx dy Kyv v
dt dt dt dtm x y m x y

= = = =
+ +

Solve these 
numerically

.

Numerical 
simulation of  a 
projectile alpha 
particle onto a gold 
target

( )2 2
min min ( ) ( )r x t y t= +

See
ruther.html
and 
ruther.avi



( )

2sin sin cos sin

            0 sin cos

             0

s s

s s

s s

mg I I I
dI I I
dt

I

θ θ ω ϕ θ ϕ θ θ

ϕ θ ω θ θϕ θ

ω

= + −

= − +

=

( ) ( ) ( ), ,t t tφ θ ψ

spinning fixed point symmetric 
top a) Numerical solution, b) 
Plot of the energy and the 
effective potential, and c) a 
snapshot of the simulated 
motion of the top's total angular 
momentum as well as the body 
angular momentum vs time

(c)

(a) (b)

Motion of Rigid Bodies – Symmetric Top (simulation)

Spinning symmetric top with its 
symmetry axis (), which is its 
spin axis as well as its principal 
axis of symmetry, at angle from 
the fixed  axis

ˆsin
fixed rot

dL dL L mg i
dt dt

τ ω θ
⎛ ⎞ ⎛ ⎞ ′′ ′′= = + × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, ,φ θ ψ

Using 
Eulerian 
angles

ˆ ˆˆ ˆ ˆ ˆsin , sin coss sL I i I j I k i j kθ ϕ θ ω ω θ ϕ θ ϕ θ′′ ′′ ′′ ′′ ′′ ′′ ′′= + + = + +

( )3 cos s sI Iϕ θ ψ ω+ ≡
or

solve numerically for

See
top.html
and 
top.avi



( ) ( ) ( ) ( )
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LAGRANGIAN DYNAMICS – Double Pendulum (simulation)

Double Pendulum
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=
=
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Coordinates

( )

( ) ( ) ( )

2 2 2 2 2 2
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1 2 1 2 1 1 2 2 2

1 1 2 cos
2 2
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− − + − − −

Lagrangian

Lagrange’s 
equations

• solve 
numerically

The double pendulum a) Eulerian angles plotted versus time 
(upper figure) and versus each other (lower figure) b) 
simulation of the pendulum for the initial conditions shown.

See
doublep.html
and 
doublep.avi



LAGRANGIAN DYNAMICS – Principle of Least Action (simulation)

Three possible paths 
in the evolution 
process of the action 
integral

2

1

t

t

S Ldt≡ ∫

Hamilton’s principle:  the motion followed by a mechanical system as it moves from 
a starting point to a final point within a given time will be the motion that provides an 
extremum for the time integral of the Lagrangian.

2

1

0
t

t

I Ldtδ= =∫

Hamilton’s principle

Example – case of a particle in free fall, we have the Lagrangian and the action:
21
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Numerically, make the approximation:

( )
2

11
2

k k
k k k

y y
L L t m mgy

t
+ −⎛ ⎞≡ ≈ −⎜ ⎟∆⎝ ⎠

with

( )
( ) ( )0

0 0
0

f
k k

f

y y
y y t t

t t

−
= + −

−

Simulation of Hamilton's 
least action principle for 
the case of the motion of 
a single particle free 
falling near Earth's 
surface, in one dimension

2
0 0

1
2

y y v t gt= + −

Modify the guess randomly, accept steps that lead to s decrease in , 1 1, 1n N n NdS S S− − −= −

until dS is small. Compare numerical results against the exact solution

and the initial guess

See
least_action.html
and 
least_action.avi



Other Highlights

•Harmonic oscillator (undamped, damped, and forced)

•Projectile Motion (analytic and numerical)

•The pendulum (small, and large angles)

•Central Forces
-Planetary Motion (analytic, numerical, and simulations) and comparison 
with data

•Eulerian Angle Frame Rotation (visualization)

•More on Rutherford Scattering
--Comparison with the 1913 Geiger Marsden Data for Silver and Gold



Conclusion

•A junior level mechanics textbook has been developed that 
incorporated computational physics: “Intermediate Classical 
Mechanics with MATLAB applications.”

•The text makes use of the valuable traditional analytic approach
in pedagogy. It further incorporates computational techniques to
help students visualize, explore, and gain insight to problems 
beyond idealized situations.

•Some programming background is expected and most 
physics/engineering majors have had programming experience 
by their junior year.

•The emphasis is placed on understanding. The analytic 
approach is supported and complemented by the computational 
approach. 

•Java applications analogue to the MATLAB scripts are 
available (under development) see below. They use the Open 
Source Physics (OSP) library of W. Christian and co-workers. 

•Comments are welcome. Please contact J. E. Hasbun

http://www.westga.edu/~jhasbun/osp/osp.htm
http://www.opensourcephysics.org/

jhasbun@westga.edu

http://www.westga.edu/~jhasbun/osp/osp.htm
http://www.opensourcephysics.org/
mailto:jhasbun@westga.edu


OPEN SOURCE PHYSICS (OSP) JAVA APPLICATIONS

ho1app

inter_spr1App



inter_spr2App

cycloid3dApp



foucaultApp

binary1App



rutherApp

topApp



doublepApp

least_actionApp


